Math 31 - Homework 1 Solutions

1. Find $\operatorname{gcd}(a, b)$ and express $\operatorname{gcd}(a, b)$ as $m a+n b$ for:
(a) $(116,-84)$

Solution. Use the Euclidean algorithm:

$$
\begin{aligned}
116 & =(-1)(-84)+32 \\
-84 & =(-3)(32)+12 \\
32 & =(2)(12)+8 \\
12 & =(1)(8)+4 \\
8 & =(2)(4)+0,
\end{aligned}
$$

so $\operatorname{gcd}(116,-84)=4$. To compute the coefficients m and n, we work in reverse, solving for the remainder at each step:

$$
\begin{aligned}
4 & =12-8 \\
& =12-(32-2 \cdot 12)=(3)(12)-32 \\
& =3(-84+(3)(32))-32=(3)(-84)+(8)(32) \\
& =(3)(-84)+8(116-84)=(11)(-84)+8(116) \\
& =11(-84)+8(116),
\end{aligned}
$$

so the coefficients are 11 and 8 .
(b) $(85,65)$

Solution. Again, use the Euclidean algorithm.

$$
\begin{aligned}
& 85=(1)(65)+20 \\
& 65=(3)(20)+5 \\
& 20=(4)(5)+0,
\end{aligned}
$$

so $\operatorname{gcd}(85,65)=5$. To find the coefficients,

$$
\begin{aligned}
5 & =65-(3)(20) \\
& =65-3(85-65) \\
& =(4)(65)-(3)(85) \\
& =4(65)+(-3)(85),
\end{aligned}
$$

so the coefficients are 4 and -3 .
(c) $(72,26)$

Solution. Euclidean algorithm:

$$
\begin{aligned}
72 & =(2)(26)+20 \\
26 & =(1)(20)+6 \\
20 & =(3)(6)+2 \\
6 & =(3)(2)+0,
\end{aligned}
$$

so $\operatorname{gcd}(72,26)=2$. For the coefficients:

$$
\begin{aligned}
2 & =20-(3)(6) \\
& =20-3(26-20)=(4)(20)-(3)(26) \\
& =4(72-2(26))-3(26)=4(72)-11(26) \\
& =4(72)+(-11)(26),
\end{aligned}
$$

so the coefficients are 4 and -11 .
(d) $(72,25)$

Solution. Euclidean algorithm:

$$
\begin{aligned}
72 & =(2)(25)+22 \\
25 & =(1)(22)+3 \\
22 & =(7)(3)+1 \\
3 & =(3)(1)+0,
\end{aligned}
$$

so $\operatorname{gcd}(72,25)=1$. As for the coefficients,

$$
\begin{aligned}
1 & =22-(7)(3) \\
& =22-7(25-22)=(8)(22)-(7)(25) \\
& =8(72-(2)(25))-7(25)=8(72)-23(25) \\
& =8(72)+(-23)(25),
\end{aligned}
$$

so the coefficients are 8 and -23 .
2. Verify that the following elements of $\left\langle\mathbb{Z}_{n}, \cdot\right\rangle$ are invertible, and find their multiplicative inverses.
(a) 4 in \mathbb{Z}_{15}

Solution. To verify that 4 is invertible, we need to check that $\operatorname{gcd}(15,4)=1$. We'll use the Euclidean algorithm:

$$
\begin{aligned}
15 & =(3)(4)+3 \\
4 & =(1)(3)+1 \\
3 & =(3)(1)+0,
\end{aligned}
$$

so 4 is indeed invertible in \mathbb{Z}_{15}. To compute the inverse, we need to write $\operatorname{gcd}(15,4)$ as a linear combination of 15 and 4:

$$
\begin{aligned}
1 & =4-3 \\
& =4-(15-(3)(4))=(4)(4)-15 \\
& =(4)(4)+(-1)(15) .
\end{aligned}
$$

Therefore, $1=4(4)+(-1)(15)$, so the inverse of 4 in \mathbb{Z}_{15} is 4 .
(b) 14 in \mathbb{Z}_{19}

Solution. Again, we need to check that $\operatorname{gcd}(19,14)=1$:

$$
\begin{aligned}
19 & =(1)(14)+5 \\
14 & =(2)(5)+4 \\
5 & =(1)(4)+1 \\
4 & =(4)(1)+0,
\end{aligned}
$$

so 14 is invertible. Let's find the inverse:

$$
\begin{aligned}
1 & =5-4 \\
& =5-(14-(2)(5))=(3)(5)-14 \\
& =3(19-14)-14=(3)(19)-(4)(14) \\
& =(3)(19)+(-4)(14) .
\end{aligned}
$$

The coefficient of 14 is -4 , which doesn't lie in \mathbb{Z}_{19}. However,

$$
-4 \equiv 15 \bmod 19
$$

so 15 is the inverse of 14 in \mathbb{Z}_{19}.
3. In each case, determine whether $*$ defines a binary operation on the given set. If not, give reason(s) why $*$ fails to be a binary operation.
(a) $*$ defined on \mathbb{Z}^{+}by $a * b=a-b$.
(b) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.
(c) $*$ defined on \mathbb{Z} by $a * b=a / b$.
(d) $*$ defined on \mathbb{R} by $a * b=c$, where c is at least 5 more than $a+b$.

Solution. (a) No. The reason is that \mathbb{Z}^{+}is not closed under *. For example, notice that

$$
2 * 3=2-3=-1,
$$

which is not in \mathbb{Z}^{+}.
(b) Yes. This * gives a binary operation on \mathbb{Z}^{+}, since it is both well-defined and \mathbb{Z}^{+}is closed under $*$.
(c) No. Given $a, b \in \mathbb{Z}$, we do not necessarily have $a / b \in \mathbb{Z}$. For example, if we take $a=1$ and $b=2$, then $a / b=1 / 2$ is not an integer.
(d) No. This is not a binary operation since it is not well-defined. The definition of $a * b$ is ambiguous at best.
4. Determine whether the binary operation $*$ is associative, and state whether it is commutative or not.
(a) $*$ defined on \mathbb{Z} by $a * b=a-b$.
(b) $*$ defined on \mathbb{Q} by $a * b=a b+1$.
(c) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.

Solution. (a) Subtraction on \mathbb{Z} is not associative. For example, we have

$$
(1-2)-3=-1-3=-4,
$$

while on the other hand,

$$
1-(2-3)=1-(-1)=2 .
$$

It is not commutative either.
(b) This operation is not associative. If $a, b, c \in \mathbb{Q}$, then

$$
(a * b) * c=(a b+1) * c=a b c+c+1
$$

while

$$
a *(b * c)=a *(b c+1)=a b c+a+1,
$$

and these two are not equal in general. (For example, take $a=1, b=1$, and $c=2$.) It is commutative, however, since multiplication of rational numbers is commutative.
(c) This operation is not associative. If $a, b, c \in \mathbb{Z}^{+}$, then

$$
(a * b) * c=\left(a^{b}\right) * c=\left(a^{b}\right)^{c}=a^{b c},
$$

while

$$
a *(b * c)=a *\left(b^{c}\right)=a^{b^{c}},
$$

and these are not equal in general. For example, take $a=2, b=1$, and $c=2$. Then

$$
2^{1 \cdot 2}=4,
$$

but

$$
2^{1^{2}}=2^{1}=2 .
$$

The operation is not commutative, either, since we have

$$
3 * 2=3^{2}=9
$$

and

$$
2 * 3=2^{3}=8
$$

for example.
5. [Saracino, Section 1, \#1.9] If S is a finite set, then we can define a binary operation on S by writing down all the values of $s_{1} * s_{2}$ in a table. For instance, if $S=\{a, b, c, d\}$, then the following gives a binary operation on S.

$*$	a	b	c	d
a	a	c	b	d
b	c	a	d	b
c	b	d	a	c
d	d	b	c	a

Here, for $s_{1}, s_{2} \in S, s_{1} * s_{2}$ is the element in row s_{1} and column s_{2}. For example, $c * b=d$. Is the above binary operation commutative? Is it associative? (Note: The sort of table described in this problem is sometimes called a Cayley table or group table.)

Solution. The operation is commutative. An easy way to see this is to observe that the table is symmetric about the diagonal. You could also go through and check that $x * y=y * x$ for any $x, y \in S$. However, it is not associative. Observe that

$$
(a * b) * c=c * c=a,
$$

while

$$
a *(b * c)=a * d=d .
$$

6. Compute the Cayley table for $\left\langle\mathbb{Z}_{6},{ }_{6}\right\rangle$.

Solution. We just need to go through and compute all possible sums of elements in \mathbb{Z}_{6}. We obtain:

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Medium

7. Suppose that $*$ is an associative and commutative binary operation on a set S. Show that the subset

$$
H=\{a \in S: a * a=a\}
$$

of S is closed under *. (The elements of H are called idempotents for *.)

Proof. To show that H is closed, we need to verify that if $a, b \in H$, then $a * b \in H$. That is, we need to show that $a * b$ is an idempotent, i.e., that

$$
(a * b) *(a * b)=a * b
$$

Since $*$ is associative, we can write

$$
\begin{equation*}
(a * b) *(a * b)=((a * b) * a) * b . \tag{1}
\end{equation*}
$$

Using associativity again, we get

$$
(a * b) * a=a *(b * a)
$$

Now using the fact that $*$ is commutative, we have

$$
a *(b * a)=a *(a * b)=(a * a) * b=a * b,
$$

again using associativity and the fact that $a * a=a$. Thus we have shown that

$$
(a * b) * a=a * b
$$

Plugging this into (1), we get

$$
(a * b) *(a * b)=(a * b) * b=a *(b * b)=a * b,
$$

since $b * b=b$, so $a * b \in H$. Thus H is closed under $*$.

