Math 31 - Homework 1 Solutions

- 1. Find gcd(a, b) and express gcd(a, b) as ma + nb for:
 - (a) (116, -84)

Solution. Use the Euclidean algorithm:

$$116 = (-1)(-84) + 32$$

-84 = (-3)(32) + 12
$$32 = (2)(12) + 8$$

$$12 = (1)(8) + 4$$

$$8 = (2)(4) + 0,$$

so gcd(116, -84) = 4. To compute the coefficients m and n, we work in reverse, solving for the remainder at each step:

$$\begin{aligned} 4 &= 12 - 8 \\ &= 12 - (32 - 2 \cdot 12) = (3)(12) - 32 \\ &= 3(-84 + (3)(32)) - 32 = (3)(-84) + (8)(32) \\ &= (3)(-84) + 8(116 - 84) = (11)(-84) + 8(116) \\ &= 11(-84) + 8(116), \end{aligned}$$

so the coefficients are 11 and 8.

(b) (85, 65)

Solution. Again, use the Euclidean algorithm.

$$85 = (1)(65) + 20$$

$$65 = (3)(20) + 5$$

$$20 = (4)(5) + 0,$$

so gcd(85, 65) = 5. To find the coefficients,

$$5 = 65 - (3)(20)$$

= 65 - 3(85 - 65)
= (4)(65) - (3)(85)
= 4(65) + (-3)(85),

so the coefficients are 4 and -3.

(c) (72, 26)

Solution. Euclidean algorithm:

$$72 = (2)(26) + 20$$

$$26 = (1)(20) + 6$$

$$20 = (3)(6) + 2$$

$$6 = (3)(2) + 0,$$

so gcd(72, 26) = 2. For the coefficients:

$$2 = 20 - (3)(6)$$

= 20 - 3(26 - 20) = (4)(20) - (3)(26)
= 4(72 - 2(26)) - 3(26) = 4(72) - 11(26)
= 4(72) + (-11)(26),

so the coefficients are 4 and -11.

(d) (72, 25)

Solution. Euclidean algorithm:

$$72 = (2)(25) + 22$$

$$25 = (1)(22) + 3$$

$$22 = (7)(3) + 1$$

$$3 = (3)(1) + 0,$$

so gcd(72, 25) = 1. As for the coefficients,

$$1 = 22 - (7)(3)$$

= 22 - 7(25 - 22) = (8)(22) - (7)(25)
= 8(72 - (2)(25)) - 7(25) = 8(72) - 23(25)
= 8(72) + (-23)(25),

so the coefficients are 8 and -23.

2. Verify that the following elements of $\langle \mathbb{Z}_n, \cdot \rangle$ are invertible, and find their multiplicative inverses.

(a) 4 in
$$\mathbb{Z}_{15}$$

Solution. To verify that 4 is invertible, we need to check that gcd(15, 4) = 1. We'll use the Euclidean algorithm:

$$15 = (3)(4) + 3$$

$$4 = (1)(3) + 1$$

$$3 = (3)(1) + 0,$$

so 4 is indeed invertible in \mathbb{Z}_{15} . To compute the inverse, we need to write gcd(15,4) as a linear combination of 15 and 4:

$$1 = 4 - 3$$

= 4 - (15 - (3)(4)) = (4)(4) - 15
= (4)(4) + (-1)(15).

Therefore, 1 = 4(4) + (-1)(15), so the inverse of 4 in \mathbb{Z}_{15} is 4.

(b) 14 in \mathbb{Z}_{19}

Solution. Again, we need to check that gcd(19, 14) = 1:

$$19 = (1)(14) + 5$$

$$14 = (2)(5) + 4$$

$$5 = (1)(4) + 1$$

$$4 = (4)(1) + 0,$$

so 14 is invertible. Let's find the inverse:

$$l = 5 - 4$$

= 5 - (14 - (2)(5)) = (3)(5) - 14
= 3(19 - 14) - 14 = (3)(19) - (4)(14)
= (3)(19) + (-4)(14).

The coefficient of 14 is -4, which doesn't lie in \mathbb{Z}_{19} . However,

 $-4 \equiv 15 \mod 19$,

so 15 is the inverse of 14 in \mathbb{Z}_{19} .

3. In each case, determine whether * defines a binary operation on the given set. If not, give reason(s) why * fails to be a binary operation.

- (a) * defined on \mathbb{Z}^+ by a * b = a b.
- (b) * defined on \mathbb{Z}^+ by $a * b = a^b$.
- (c) * defined on \mathbb{Z} by a * b = a/b.
- (d) * defined on \mathbb{R} by a * b = c, where c is at least 5 more than a + b.

Solution. (a) No. The reason is that \mathbb{Z}^+ is not closed under *. For example, notice that

$$2 * 3 = 2 - 3 = -1$$

which is not in \mathbb{Z}^+ .

(b) Yes. This * gives a binary operation on \mathbb{Z}^+ , since it is both well-defined and \mathbb{Z}^+ is closed under *.

(c) No. Given $a, b \in \mathbb{Z}$, we do not necessarily have $a/b \in \mathbb{Z}$. For example, if we take a = 1 and b = 2, then a/b = 1/2 is not an integer.

(d) No. This is not a binary operation since it is not well-defined. The definition of a * b is ambiguous at best.

4. Determine whether the binary operation * is associative, and state whether it is commutative or not.

- (a) * defined on \mathbb{Z} by a * b = a b.
- (b) * defined on \mathbb{Q} by a * b = ab + 1.
- (c) * defined on \mathbb{Z}^+ by $a * b = a^b$.

Solution. (a) Subtraction on \mathbb{Z} is not associative. For example, we have

$$(1-2) - 3 = -1 - 3 = -4,$$

while on the other hand,

$$1 - (2 - 3) = 1 - (-1) = 2$$

It is not commutative either.

(b) This operation is not associative. If $a, b, c \in \mathbb{Q}$, then

$$(a * b) * c = (ab + 1) * c = abc + c + 1,$$

while

$$a * (b * c) = a * (bc + 1) = abc + a + 1$$

and these two are not equal in general. (For example, take a = 1, b = 1, and c = 2.) It is commutative, however, since multiplication of rational numbers is commutative.

(c) This operation is not associative. If $a, b, c \in \mathbb{Z}^+$, then

$$(a * b) * c = (a^b) * c = (a^b)^c = a^{bc},$$

while

$$a * (b * c) = a * (b^c) = a^{b^c},$$

and these are not equal in general. For example, take a = 2, b = 1, and c = 2. Then

$$2^{1\cdot 2} = 4,$$

but

$$2^{1^2} = 2^1 = 2$$

The operation is not commutative, either, since we have

$$3 * 2 = 3^2 = 9$$

and

$$2 * 3 = 2^3 = 8$$

for example.

5. [Saracino, Section 1, #1.9] If S is a finite set, then we can define a binary operation on S by writing down all the values of $s_1 * s_2$ in a table. For instance, if $S = \{a, b, c, d\}$, then the following gives a binary operation on S.

*	a	b	c	d
a	a	c	b	d
b	c	a	d	b
c	b	d	a	c
d	d	b	c	a

Here, for $s_1, s_2 \in S$, $s_1 * s_2$ is the element in row s_1 and column s_2 . For example, c * b = d. Is the above binary operation commutative? Is it associative? (Note: The sort of table described in this problem is sometimes called a **Cayley table** or **group table**.)

Solution. The operation is commutative. An easy way to see this is to observe that the table is symmetric about the diagonal. You could also go through and check that x * y = y * x for any $x, y \in S$. However, it is not associative. Observe that

$$(a * b) * c = c * c = a,$$

while

$$a \ast (b \ast c) = a \ast d = d.$$

6. Compute the Cayley table for $\langle \mathbb{Z}_6, +_6 \rangle$.

Solution. We just need to go through and compute all possible sums of elements in \mathbb{Z}_6 . We obtain:

$+_{6}$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Medium

7. Suppose that * is an associative and commutative binary operation on a set S. Show that the subset

$$H = \{a \in S : a \ast a = a\}$$

of S is closed under *. (The elements of H are called **idempotents** for *.)

Proof. To show that H is closed, we need to verify that if $a, b \in H$, then $a * b \in H$. That is, we need to show that a * b is an idempotent, i.e., that

$$(a * b) * (a * b) = a * b$$

Since * is associative, we can write

$$(a * b) * (a * b) = ((a * b) * a) * b.$$
(1)

Using associativity again, we get

$$(a \ast b) \ast a = a \ast (b \ast a).$$

Now using the fact that * is commutative, we have

$$a * (b * a) = a * (a * b) = (a * a) * b = a * b,$$

again using associativity and the fact that a * a = a. Thus we have shown that

$$(a \ast b) \ast a = a \ast b.$$

Plugging this into (1), we get

$$(a * b) * (a * b) = (a * b) * b = a * (b * b) = a * b,$$

since b * b = b, so $a * b \in H$. Thus H is closed under *.